

Convection-Anvil and Thin-Cirrus Simulations by a Cloud-Resolving NWP Model: Some Preliminary Results

Donghai Wang^{1,2}, Patrick Minnis² and Louis Nguyen²

¹Center for Atmospheric Sciences, Hampton University, Hampton, VA ²NASA Langley Research Center, Hampton, VA

Motivation

- To understand convection-anvil and thin-cirrus/tropopause-cirrus properties and physical processes by modeling.
- · To examine the formation and evolution of these cloud systems and their interaction and feedback processes with radiation, microphysics, dynamics, and thermodynamics
- To validate and improve parameterization of cirrus cloud in weather/global

Cloud-Resolving NWP Model and Configuration

- The model used is the Advanced Regional Prediction System (ARPS). It is a multi-purpose modeling system capable of multi-scale numerical weather prediction (NWP) ranging from cloud-scale to larger regional scale.
- The model contains detailed interactive physics for explicit cloud-resolving, e.g., cloud-radiation interactive package, cloud microphysics, advanced turbulence scheme, and land surface effect et al.
- In this study, two one-way nested 15/3 km grids are employed over the CRYSTAL-FACE area. We will focus on the 3-km domain covering 600 x 600 km² in horizontal and 25 km in vertical.

Next Steps

- analyze the simulated data for understanding the formation/maintain physical mechanisms of anvils/cirrus, and the influence on radiative heating and cooling as well as the column radiation budget.
- Higher resolution (~1 km) simulations and some sensitivity experiments.
- Objective validation/comparison of the simulations with the field measurements.
- To compute the related optical properties.
- To test and improve the model cloud microphysics.

Acknowledgment. This work is supported by the NASA CRYSTAL-FACE project. The supercomputing resource is provided by NASA Center for Computational Sciences (NCCS).

Corresponding E-mail Address: d.h.wang@larc.nasa.gov

Thin-cirrus related to convections CRYSTAL-FACE Region-C: 3-km Resolution

The Simulated Thin-Cirrus

Thin-cirrus/Tropopause-cirrus of July 13

3D isosurface view at 1630 UTC